

EGNOS/EDAS based solution for the French DGPS network.

Author: Etienne LEROY

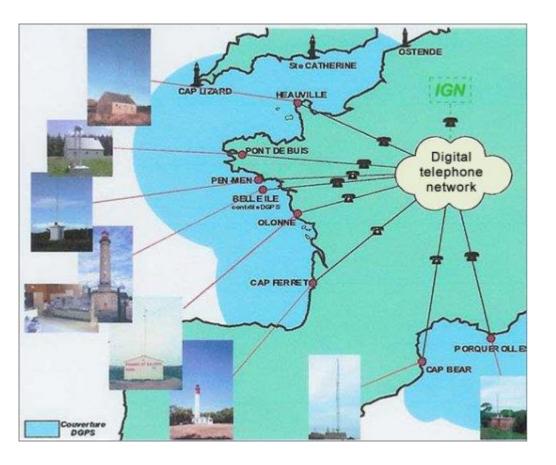
Date 04/10/2017

1.Context 2.EDAS Centralized based architecture 3. Software and devices 4.Test Campaign 5.Cost based analysis 6.Conclusion

Author: Etienne LEROY

Date 04/10/2017

✓ DGNSS guidelines and recommendations (IALA, IMO...) define main performances to be achieved


✓ French DGPS network becoming outdated therefore has to be replaced

✓ Recommendation IALA-R135: «on the future of DGNSS» clearly identify SBAS as potential source of maritime differential correction

✓ GSA works closely with stakeholders (EMRF, NMSP, IALA...) to foster EGNOS adoption in maritime

7 stations metropolitan France and 1 station overseas (Guyane)

✓ Deployment about 15 years ago

 Central control station at Belle-île (Far-field monitoring)

✓ Remote control and survey using ISDN network

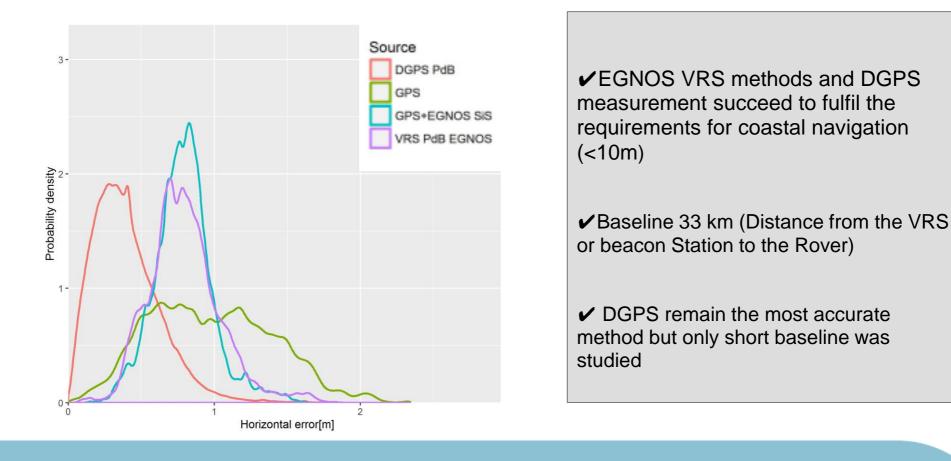
✓ Integrity-monitor at station allows only Post-Broadcast monitoring

DGPS Issues

- No redundancy (One couple RS/IM per station)
- ✓ Lack of pre-broadcast integrity
- Equipments are obsolete (regular failures)
- Service requirement no longer achieved (availability)

✔

French Maritime Authorities instructed CEREMA to propose a short-term and cost effective solution for DGPS service maintenance


EGNOS/EDAS Based solution has been selected thanks to a promising preliminary study conducted by Cerema in 2016

5

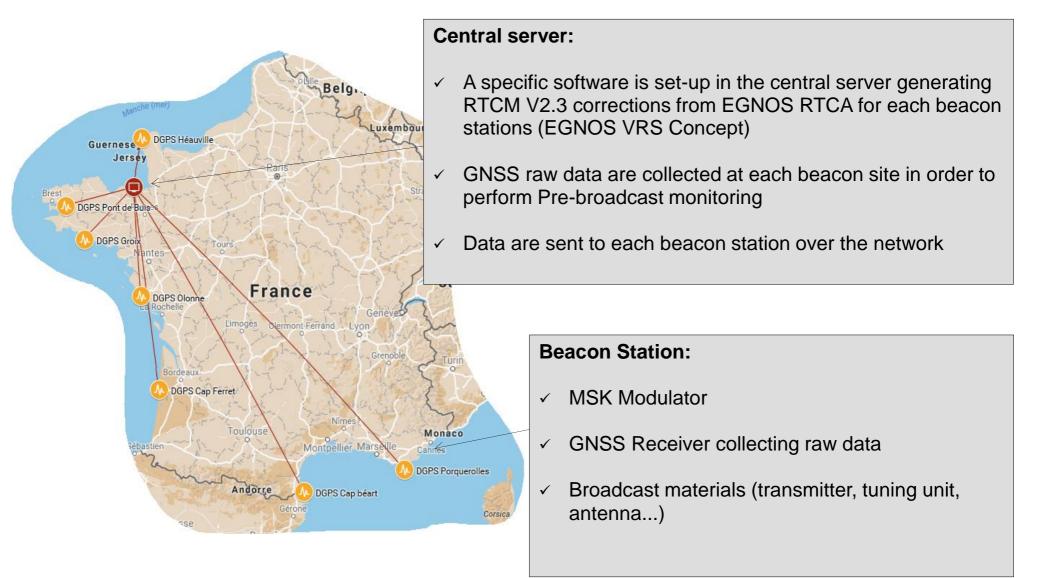
Preliminary study results (Cerema 2016)

Position accuracy of 1.1 meters (95^{Percentile}) using either EGNOS SiS or RTCM converted from EDAS

EGNOS/EDAS based solution for the Erench DGPS Network

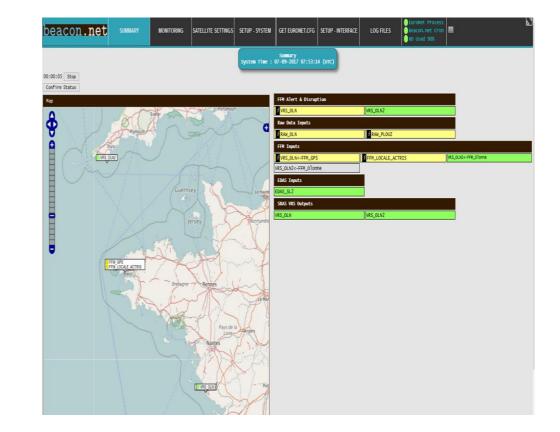
6

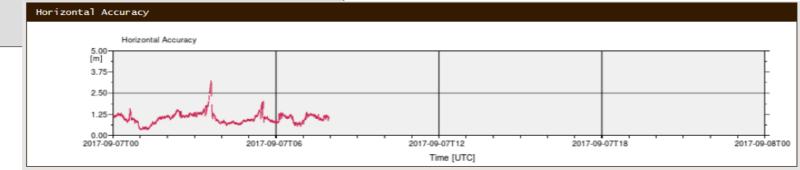
6


2.EDAS Centralized based architecture

Two Approaches for an EGNOS/EDAS based DGPS \rightarrow Centralized or Local

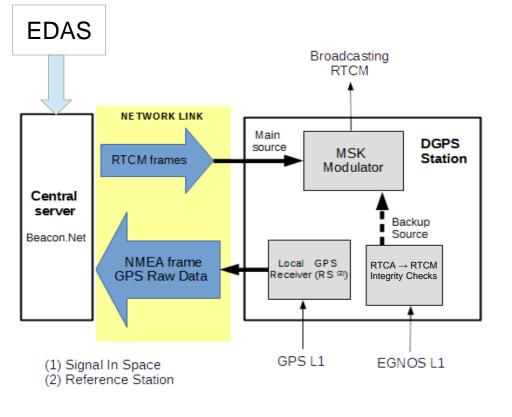
Local	Centralized
Independent of the network if SiS is used for collecting EGNOS Data	✓ RTCA to RTCM software needed at the central facilities
Reduction of infrastructure on site compared to traditional DGNSS	 Significant reduction of material on the site (likely most cost effective)
	 Dependant to a reliable network
	 Mitigation of the jamming/local effects


2.EDAS Centralized based architecture



Beacon.net:

- Provided by Alberding company (Germany)
- Provisions of Pre-Broadcast integrity (Position and SV domain)
- Monitoring of the data-flows (EDAS, VRS, GNSS Raw Data, Far-Field Monitors)
- Provision of reports for key parameters (Accuracy, availability, position precision...)



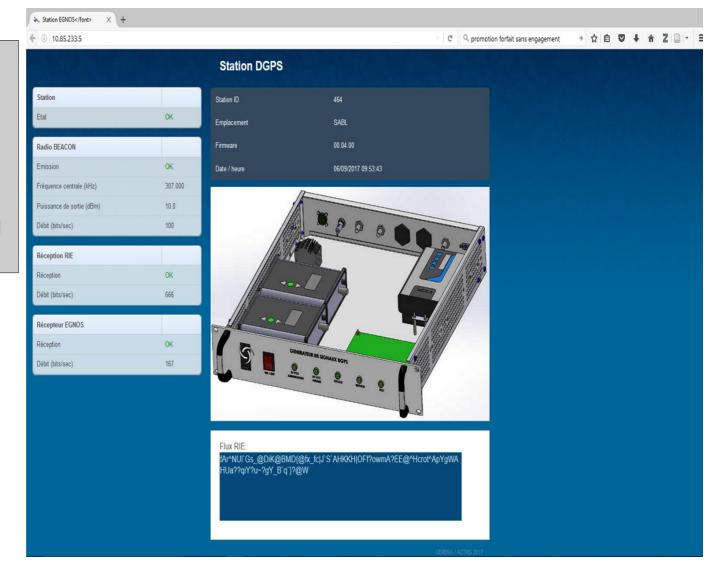
9 EGNOS/EDAS based solution for the French DGPS Network

MSK Modulator:

Similar Products «off the shelves» are not usual in the market \rightarrow Need of a specific development

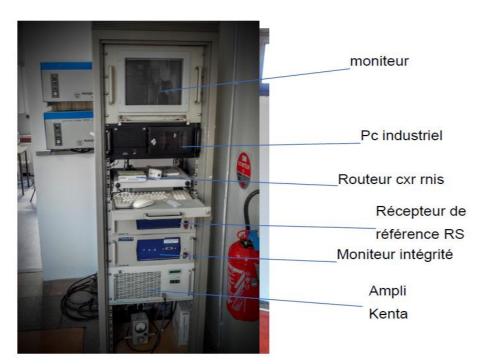
Specifications for the call:

- ✓ IP enabled/remotely monitorable and configurable
- Broadcast a RTCM message type 6 with « Not operating » Flag if the station is not properly working
- Connected to two sources of RTCM in order to switch from one to another in case of defect (future backup)
- ✓ Fit with ITU M.823-3 (baud rate 25/50/100/200, frequency from 283,5 to 325 KHz...)



MSK Modulator:

- Designed by ACTRIS
 Company (France, Brest)
- ✓ Included in a 2 Unit Rack
- ✓ Web access for monitoring



MSK Modulator:

EGNOS Centralized architecture concept allows significant reduction of hardware on-site.

EDAS Centralized solution site infrastructure

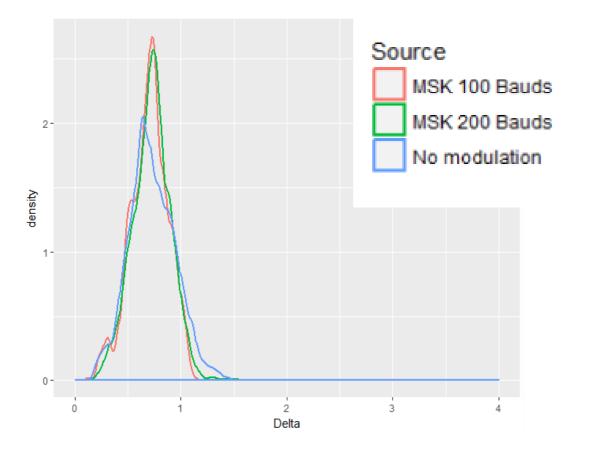
Traditional DGNSS beacon site infrastructure

Two main set of measurements:

[1] MSK Modulator validation in the laboratory:

- Laboratory scale tests without broadcasting
- ✓ The modulator output signal was attenuated and merged with L1 frequency
- ✓ Test duration was set to at least 12 hours

[2] Full scale tests


- ✓ The modulator was set-up in the beacon station of Olonne (307 KHz)
- ✓ The station was linked to the central server over the Inter-Administration-Network
- ✓ Marines were informed that signal provided is for testing purposes («Do not use it»)
- Test duration was between 24 hours to one week

4. Test Campaign

[1] MSK Modulator validation in the laboratory (no broadcast):

The objectives was to validate that the modulation of the RTCM provided by Beacon.net does not affect the position accuracy

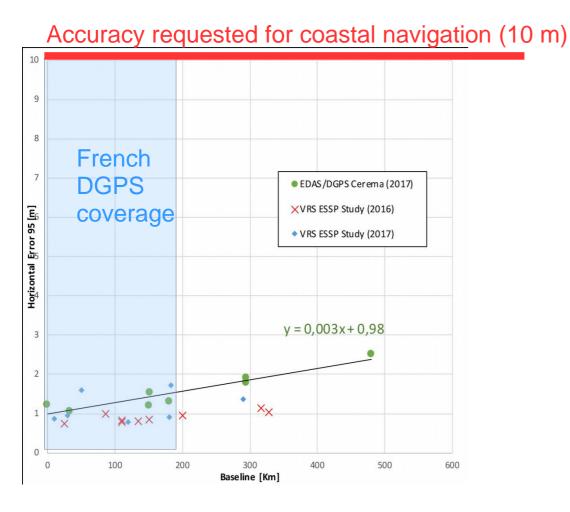
- The data has been collected in Plouzané and the VRS is defined in the location of Pont de Buis (baseline 33 Km)
- No significant difference was noticed between the three set of measurements

✓ Accuracy was 1.0 ± 0.1 m

4. Test Campaign

[2] Full scale tests (Broadcast 307 KHz):

The objective was to assess the capability of the complete chain to fulfil the requirements particularly continuity and positioning performances within the defined coverage area


2.5 -	Source	Baseline length	95 ^{percentile} (m)
2.0 -	150 Km BL	0	1.22
densit 1.0 -	458 Km BL	150	1.52
0.5 -		195	1.78
0.0 -		458	2.6
Ó	1 2 3 4 Delta		

Note: Data collected using the same receiver and antenna at different epochs Different VRS locations generated to simulate a wide range of rover baseline

4. Test Campaign

Summary:

- ✓ Accuracy in the French coverage area remains below 2m (<<10m)
- ✓ Spatial decorrelation measured by Cerema ~ 30cm/100 Km → In line with standard DGPS¹
- ✓ Accuracy (95%) at 0 Km baseline
 ~ 1 m → Typical EGNOS RTCA horizontal error²
- 1 0.22 m / 100km Monteiro(2005) 0.5m / 100 km Canadian CG (2000)

2 - Extract from the EGNOS monthly performance report August 2017 Station HNSE 95%

Station	HNSE 95% (meters)
Aalborg	0.6
Athens	0.7
Berlin	0.7
Canarias	1.0
Cork	0.7
Catania	0.7
Djerba	0.8
Egilsstadir	0.7
Glasgow	0.7
Golbasi	0.9

5. Cost based analysis

Cost based analysis for deployment (Cerema & ESSP):

	Cerema	ESSP CBA ¹
DGPS standard (no Redundancy)	150 K€	133 K€
Egnos-Centralized	20K€ ^{2,3}	27 K€

Note 1: Values extracted from a specific cost base analysis delivered by ESSP to France Note 2: taking into account the quantity discount for 7 stations. Note 3 : Not taking into account the development costs of the modulator

The EGNOS centralized cost includes:

- License for the software with modules for: EDAS client, VRS, RTCA → RTCM, PB-monitoring)
- RTCM Modulator
- GNSS receiver for raw-data collection for PBM

6. Conclusion & prospects

Conclusion:

✓ Full scale tests confirm the capability of centralized solution based on EDAS converted to RTCM to fulfil the requirements for coastal navigation in real operation conditions.

✓A solution based on EGNOS SiS with integrity checks is a very promising way to set a backup at each beacon site independent of network.

✓ Sharing interests and results with other maritime stakeholders to solve the last issues

✓ 2018 \rightarrow To deploy the official service (based on EDAS) in at least two stations + design and test an EGNOS based backup solution

Thank You

Etienne LEROY **Technical engineer**

+33 (0)298057613 etienne.leroy@cerema.fr

