

EGNOS potential in railway safety-critical applications

Peter Gurnik Technical Affairs Manager (UNIFE)

- UNIFE represents the European Rail Supply Industry (rolling stock, infrastructure, sub-systems and signalling)
- UNIFE is a trusted partner of European and international institutions in all matters related to rail transport
- Over 85 full members of the largest and small and medium-sized companies in the rail supply sector and 17 associated members including 14 National Associations, representing almost 1000 suppliers of railway equipment

World leaders:

UNIFE members have a 84% market share in Europe and supply 46% of the worldwide rail production

UNIFE Members (1)

UNIFE Members (2)

Associate Members

What is ERTMS/ETCS?

ERTMS / ETCS (European Train Control System) in a nutshell:

- ETCS is a train control system, developed to replace more than 20 existing systems in Europe
- ETCS provides the driver with signalling information, such as how fast he is allowed to drive and until where
- ETCS supervises the movement of the train and prevents the driver to exceed the indicated limits
- ETCS complies with highest safety standards, permitting operation at very high speeds and traffic density, and without traditional optical lineside signals
- Compatible ETCS equipment is available from multiple suppliers

Contracted routes World share

Contracted vehicles World share

Worldwide ERTMS investments

Total track km: 88,885

48 Countries are using ETCS trackside

Total No vehicles: 11,687

45 Countries are using ERTMS vehicles

The role of UNISIG U-N-I-S-I-G

- UNISIG is an industrial working group within UNIFE actively contributing to the technical specification of the European Train Control System (ETCS);
- UNISIG has started investigating the application of GNSS for ETCS in June 2011, when a global market study showed a significant interest in the possibility to reduce trackside infrastructure;
- To maintain and improve the ETCS specification UNISIG works closely with e.g. the European Commission, the European Railway Agency, the Community of European Railways and the European Rail Infrastructure Managers;
- It can also be noted that all developments of UNISIG are published as open standards, and are in the public domain.

ALSTOM

Ansaldo STS

SIEMENS

Concept of "virtual balises" in the scope of ERTMS/ETCS

- The aim is to reduce cost of ETCS trackside by reducing the number of (real) balises in the track, which would also increase availability, reduce exposure to theft, vandalism etc.
- To minimize the impact on ETCS the concept of "virtual balises" was developed, in which a GNSS based positioning system shall confirm train position at defined reference points
- This also allows handling of gaps in coverage, compared to a solution which requires permanent coverage

Towards the ERTMS global

- ✓ Railway stakeholders have agreed that the satellite positioning is among the key objectives for the future evolution of ERTMS;
- ✓ New MoU signed by the sector on 20th September 2016

Challenges

- ETCS complies with highest safety standards, permitting operation at very high speeds and traffic density, and without traditional optical lineside signals
- Compatible ETCS equipment is available from multiple suppliers

- Satellite positioning alone will not fulfill these requirements, a gap exists that has to be filled with other means (such as e.g. balises or additional sensors)
- Factors that should be taken into account: harsh railway environment including multipath, interference and signal blockages, interoperability requirement, safety and security, etc.

Research

Experts have to investigate to which extent the overall requirements can be reduced, e.g. by limiting the use of satellite positioning to certain applications.

Multi-constellation approach, including European GNSS, has the positive effect for number of performance parameters, but is not enough, especially from the safety perspective.

EGNOS

- EGNOS system was designed to answer the Aviation requirements and some of its main features, if not adapted for railways, are not applicable;
- In close cooperation with all the relevant stakeholders to specify the user requirements for future EGNOS evolution relevant for railways;

Introducing NGTC project

- **42 months research project**, under the coordination of UNIFE, running in the frame of the EU FP7 programme.
- A number of key urban and mainline railway related organisations are involved.
- The crucial task of the project is to analyse the commonalities and differences of required functionality of both ETCS and CBTC systems.
- The target is to evolve urban and mainline system solutions and effectively utilising experiences from the existing train control systems.

Possible convergence of rail domain As a result of NGTC

Consortium

Urban Operators

Mainline IMs & RUs

Research Centers &

Others

Signaling Companies

NGTC Technologies: Satellite Positioning 1

- Analyses of the Satellite Positioning Signal Receiver Parameters that are relevant for the signalling applications and the process of their qualification and validation;
- Definition of the Operational Scenarios with virtual balise applicable for ERTMS and the link Database;
- Initial Safety Analyses in regards to use of satellite positioning in ERTMS;
- Analysis of the other than ERTMS applications of satellite positioning functionality;

NGTC

NGTC Technologies: Satellite Positioning 2

- The preliminary functional architecture for ERTMS virtual balise concept
- Assumption: Due to the limited visibility of EGNOS satellites in a typical railway environment, the messages may be forwarded by train radio communication system to the onboard signaling unit;

NGTC

NGTC relations with Shift2Rail JU

NGTC was designed as a light house project for SHIFT²RAIL (IP2), the first European rail ioint undertaking seek to focused research and (R&I) innovation and market-driven solutions accelerating the by integration of new and advanced technologies:

- WP3 NGTC SRS IF specifications
- **WP5** Moving Block
 - WP6 IP-based Radio
 - WP7 Satellite positioning

- TD2.1 Adaptable
- **c**ommunications
- TD2.2 ATO up to GoA4 TD2.3 Fluid Moving Block
 - **TD2.4** Advanced fail safe train positioning

Introducing the STARS project

STARS: The key project objectives

Expected results

- To predict performance in the railway environment in terms of accuracy, availability and safety
- To achieve interoperability between equipment of different suppliers
 - To allow inclusion of GNSS into ERTMS

To develop a **universal approach to predict the achievable GNSS performance in a railway environment**, especially for safety critical applications within ERTMS and to determine the necessary evolution of ETCS to include GNSS services

> To quantify the economic benefits through reduction of cost, which will increase market appeal of ERTMS

STARS Project Consortium

Overall structure of the STARS work-plan

GNSS Measurement Campaign

- Preparation of campaign
 - Methodology, Procedures, Identification of the suitable lines
- · Field measurement, data collection

GNSS Data Analyses and Performance Evaluation

- Data post-processing, Railway environment characterization
- EGNSS services evolution, EGNSS performances assessment in rail environment

GNSS Economic Evaluation

- Cost Benefit & Impact Assessment
- EGNSS / ERTMS evolution roadmap
- Implementation plan

Thank you for your attention!

For more information:

Peter Gurnik

Avenue Louise 221

B-1050 Brussels (Belgium)

+32 2 431 04 61

peter.gurnik@unife.org