

Stuart Deathridge GLU-2100 Capabilities

DATE: October 2025

EVOLUTION OF GNSS NAVIGATION

ENHANCED NAVIGATION PERFORMANCE

July 1977 First GNSS signal received and decoded in Cedar Rapids, at Collins

1998

 GPS approved for sole means of navigation

2000

Selective availability turned off

2003

First SBAS LPV approach

2005

 GBAS Cat I implemented

GPS-4000A

2015

Implementation of RNP/RNAV in global

GPS-4000S

2020

RFI Threats

US ADS-B GNSS req. GLU-2100

GLS Cat II/III

2023

RF Robustness

Dualfrequency/ Multiconstellation

2025+

■ Geopolitical mandates

PBN **Mandates**

Rollout

GLU-920

PRE EFFICIENT AIRSPACE

GLU-925

Navigation Challenges Being Faced

Evolving Airspace

 The challenges being solved today are different than what we'll face tomorrow

Aging Ground Infrastructure and Regional Changes

 Legacy solutions are aging and being phased out in favor of PBN requirements

Increased Jamming & Spoofing

 Intentional RFI has expanded at exponential rates in recent years

Landing globally is non-optional

RFI and **GPS**

Intentional events more common in:

Baltic Region

Black Sea

Eastern Mediterranean / Middle East

China

Collins GLU-2100 Multi-Mode Receiver (MMR)

- Growth Focused
 - Field-loadable, software-configurable packages
 - Adaptable to meet today and future needs: SBAS, LPV/SLS, RFI, DFMC, etc.
 - Future Development Capability Proven
 - Flew on <u>B777 Eco Demonstrator</u>
 - GLAD Global ARAIM for Dual Constellation
 - MUGG <u>Multi-Mode GPS and Galileo Project</u>
- Drop-in replacement for most existing MMRs
- Robust, DAL A hardware
- Reduced size, weight, & power requirements

Built for today – designed for tomorrow

Setting Precedence

- 12,000 Systems Sold
- 12M Flight Hours in Service
- Prototyping DFMC MOPS ED-259B via B777 Eco Demonstrator, GLAD, MUGG, multiple committee chairs on RTCA/EUROCAE Groups, representation on GNSS Spoofing OPSGROUP

GLU Capability Progression

		Current Software		
GLU-925	GLU-2100 Initial Version	GLU-2100 V2.6 (Boeing) L4.2 (Airbus)	GLU-2100 Next SW With Optional Detection and Mitigation feature	GLU-2100 Planned Future SW
No	Yes	Yes	Yes	Yes
No	Yes*	Yes*	Yes*	Yes*
No	Option Enabled	Option Enabled	Option Enabled	Option Enabled
No	Yes*	Yes*	Yes*	Yes*
No	No	Option Supported*	Option Supported*	Option Supported*
No	No	Option Enabled	Option Enabled	Option Enabled
No	No	Yes	Yes	Yes
No	No	✓	/ /	///
No	No	No	Option Enabled	Option Enabled
No	No	No	No	Option Enabled
	No	No Yes No Yes* No Option Enabled No Yes* No	GLU-925 GLU-2100 V2.6 (Boeing) L4.2 (Airbus) No Yes Yes No Option Enabled Option Enabled No No No Option Supported* No	GLU-925 GLU-2100 Initial Version No Yes Yes Yes Yes* No Option Enabled No Yes* No Option Supported* No

- Current Software -

Future Focused

Intentional RFI

JAMMING AND SPOOFING

Jamming

- Malicious signals emitted overpowering the satellite signals
 - Stops location data from reaching the receiver or renders it unusable
- Result is loss of PVT data

- Malicious signals inserted to suggest the aircraft is somewhere else.
 - False location data is received causing false positioning without warning
- Result is misleading PVT data

Two separate RFI issues that need to be solved

Research & Development: Jamming

Coasting

- Coasting uses the last known PVT data and inertial input to estimate an accurate PVT while encountering RFI
 - Initialized when PVT data is lost in the event of jamming
 - Could also be initialized when SENTRI detects a spoofer

Anti-Jam Antenna

- R&D is underway at Collins
 - We are analyzing a few different solutions
 - We will be soliciting VOC in the near future

Solutions for jamming are on the way

GLU-2100 Future Potential Options

Evaluating & Prototyping -

- Dual Frequency / Multi-Constellation Option (DFMC)
 - Upgradable via software and dual-frequency antenna
 - Additional navigation modes
 - Further RFI improvements
- MUGG Project
 - Extensive DFMC work being done by Collins in support of the European Union Agency for the Space Programme (EUSPA)

Exploration

- Alternate Position Navigation and Timing (APNT)
 - Use of non-GNSS APNT sources
 - Dependent on industry alignment, regulatory acceptance, and OEM Integration

GLU-2100 designed to grow for continued future flexibility

Why Dual Frequency Multi Constellation (DFMC)?

- Current Legacy SFSC (Single Frequency Single Constellation) limitations and vulnerabilities
- Obvious increased availability with much more satellites/signals in view + redundancies
- Improvement of the integrity of the GNSS solution, more trust can be placed in the accuracy of navigation solution PVT (Position Velocity and Time)
- Accuracy is improved thanks to less noisy measurements and the ability to remove some error sources such as ionospheric delay
- Specifically in aviation, there is a possibility to operate at more airports in locations with limited or no ground-based landing systems or SBAS (Satellite Based Augmentation System) coverage
- Increased resilience and in case of a single frequency outage (jamming, meaconing, spoofing, ...)
- Access to new operations (low RNP, LPV 200 in equatorial regions, ...)
- Access to new protections against feared events: authentication, cross checks, natural signals robustness, etc.

Why DFMC for civil aviation?

MUGG Project: GLU-2100

- The GLU-2100 is an ARINC 755-4 compliant digital Multi Mode Receiver that supports the following TSO functions:
 - VOR receiver compliant to DO-196 and ED-22B
 - MB receiver functionality compliant to DO-143 and 1/WG7
 - ILS Localizer receiver functionality compliant to DO-195 and ED-46B
 - ILS Glideslope receiver functionality compliant to DO-192 and ED-47B (up to Cat IIIb installation supported)
 - GNSS*:
 - L1 GPS used for navigation
 - SBAS Navigation & Landing compliant to DO-229E Satellite Based Augmentation System, wide area or regional (EGNOS, GAGAN, MSAS etc.) augmentation to the GPS navigation system enables higher precision and integrity data to be used.
 - GBAS Navigation & Landing (Cat I) compliant to DO-253C Ground Based Augmentation Systems that supports local area augmentation from a ground station that enables very high precision and integrity data to be used.
- * TSO-C145d Class Beta-3, TSO-C146d Class Delta-4, ETSO-C145c Class Beta-3, ETSO-C146c Class Delta-4

MUGG Project: GLU-2100 -> DFMC Prototype

- The MUGG DFMC Prototype is built from Collins GLU-2100 Product and includes:
 - New navigation modes: DFMC SBAS PA/NPA, DFMC H-ARAIM, L5 H-ARAIM
 - Implementation of ED-259A MOPS acquisition and tracking requirements
 - Optimizations to DSP functions and resource re-allocations
 - Specific forced modes for test purposes...
- Why DFMC?
 - GPS L1/L5 and Galileo E1/E5a
 - Integrity of the GNSS solution is increased, meaning more trust can be placed in the accuracy of the PVT
 - Accuracy is improved thanks to less noisy measurements and the ability to remove some error sources such as ionospheric delay
 - Specifically in aviation, there is the possibility to operate at more airports in locations with limited or no ground-based landing systems or SBAS coverage
 - Increased resilience in case of an L1/E1 outage

Project main achievements

HARAIM

- For the first time on the certified platform GLU-2100, H-ARAIM developed in the scope of MUGG have been demonstrated in a representative operational conditions
- With improved Poonst for the Galileo constellation, a significant improvement for the Protection Levels performance would be achieved: down to 20 meters

SBAS DFMC

- MUGG project demonstrated the implementation of DFMC SBAS capability on an Avionics certified hardware platform
- Comparison of L1 SBAS, GPS L1L5 SBAS and DFMC SBAS shows significant improvement for LPV and CAT1 coverage
- Implementation of MOPS in a representative avionics receiver is key to mature/consolidate MOPS requirements

For further information...

Any question is welcome!

• MUGG project website:

Multi-Mode Global Positioning
System and Galileo Project |
Collins Aerospace

Christophe Ouzeau:

christophe.ouzeau2@collins.com

Committed to air travel safety

ommitment to current and future air travel safety, the MUGG project continues to puravigation excellence adapting technology and performing flight trials.

Request information

I would like more information about this capability.

Contact and website

Thank You!

Name: S. Deathridge

Date: October 2025