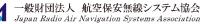


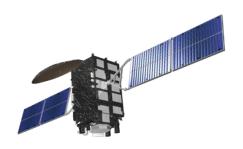
Ministry of Land, Infrastructure, Transport and Tourism Civil Aviation Bureau of Japan

MSAS (Michibiki Satellite-based Augmentation Service)

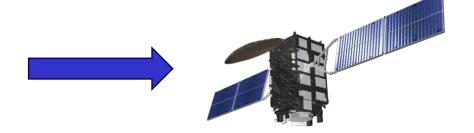
EGNOS Workshop 2025
Berlin, Germany
Oct. 1-2, 2025

Toru Ishita (JRANSA) Koji NAKAITANI (JCAB)



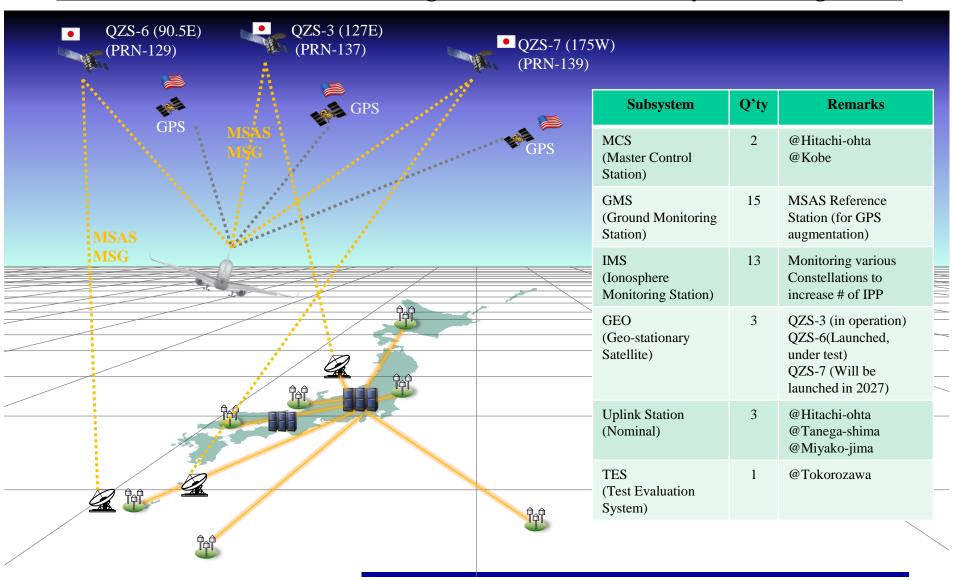


Contents



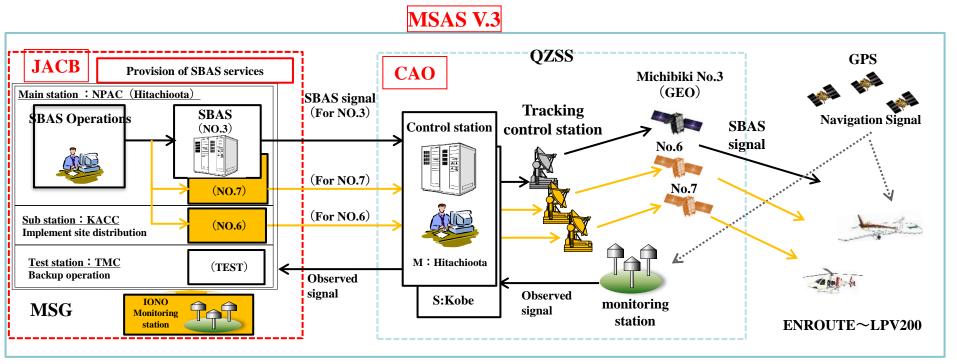
- > Introduction of MSAS
- MSAS Version 3 Status
- > MSAS R&D Activity Status
- > MSAS Performance Assessment
- > Conclusion

FY	07 08 09 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 ~	
MSAS	MSAS Ver.1	MSAS Ver.2 MSAS Ver.3	
Ver.	WISAS VEL.	WISAS Vel.2	
GEO Satellite	MSAS: Multifunction Transport Satellite (MTSAT) Satellite- based Augmentation System	MSAS: Michibiki Satellite based Augmentation Service	


ICAO SARPs ANNEX 10 Volume I 7th Edition, Attachment D of Amendment 92 ~

6.2.2 Satellite-based augmentation services are provided by the Wide Area Augmentation System (WAAS) (North America), the European Geostationary Navigation Overlay Service (EGNOS) (Europe and Africa), the Michibiki Satellitebased Augmentation Service (MSAS) (Japan) and the GPS-aided Geo-augmented Navigation (GAGAN) (India). The System for Differential Correction and Monitoring (SDCM) (Russia), the BeiDou Satellite-based Augmentation System (BDSBAS) (China), the Korea Augmentation Satellite System (KASS) (Republic of Korea), the Augmented Navigation for Africa (ANGA) (ASECNA) and the Southern Positioning Augmentation Network (SouthPAN) (Australia and New Zealand) are also under development to provide these services.

Michibiki(導き) = Guidance



MSAS (Michibiki Satellite-based Augmentation Service) - V3 System Configuration

Organization aspects to Operate MSAS V.3

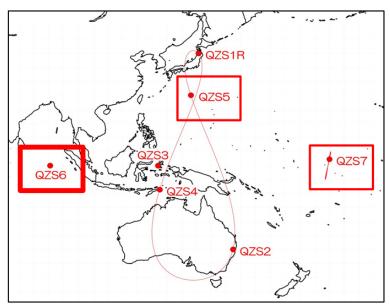
JCAB : MSAS Service Provider

► NPAC: Operation of MSG and GPM.

Evaluation/Analysis of MSAS performance

CAO: QZSS Service Provider

MSG: MSAS Signal Generation Equipment

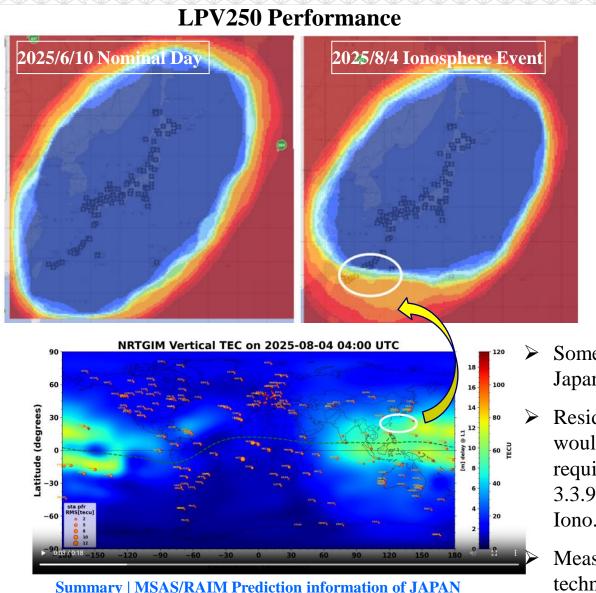

GPM: GNSS Prediction and Monitoring equipment

To 7-satellite constellation

- QZS-6 was launched to GEO on 90.5 East Longitude on 2nd Feb, 2025.
- Two additional MICHIBIKI(QZS-5,7) will be placed on an IGSO and a Quasi-Geostationary Orbit on 175 West Longitude, respectively.
- ■This 7 Satellite constellation aims:
 - To be visible more than four satellites and get better DOP.(PNT)
 - To be visible more than one satellite at high elevation angle. (Augmentation)

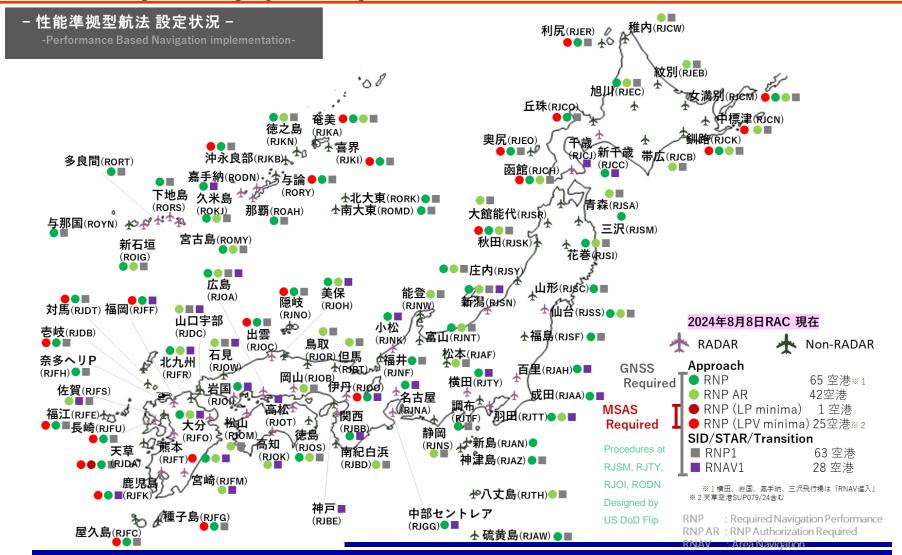
Satellite orbit	Satellite Number	Orbital Position
IGSO (4 satellites)	QZS-1R QZS-2 QZS-4	133 deg E 139 deg E 139 deg E
	QZS-5	139 deg E
CEO (2 catallitas)	QZS-3	127 deg E
GEO (2 satellites)	QZS-6	90.5 deg E
QGEO (1 satellite)	QZS-7	175 deg W

7 Satellite constellation
(4 IGSO + 2 GEO +1 QGEO) will be
completed within Japanese FY2025.


QZS-5 and 7 will be launched respectively in
Late FY2025.

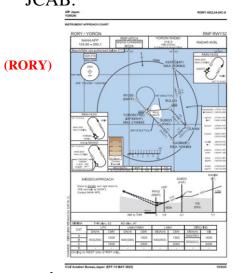
Version	Overview	Feature	Service Level	LPV200 Performance
MSAS-v1	L1 SBAS Operational Period 2007 – 2020 Two MTSAT (PRN129/137) Eight reference stations	Eliminate RAIM check requirement	ENROUTE ~ NPA	
MSAS-v2	L1 SBAS Operational Period 2020 – present Quasi-Zenith Satellites System GEO (PRN137) Thirteen reference stations (G-III) cover planned Mar 2025	Eliminate RAIM check requirement LPV250 procedures with LPV250 prediction NOTAM	ENROUTE ~ NPA	
MSAS-v3	L1 SBAS Operational Period 2025 – v4 Quasi-Zenith Satellites Systems GEO (PRN129/137/139) Fifteen GMS (G-III) Thirteen IMS (GT7800) Dual MCS	Eliminate RAIM check requirement LPV200 procedures with or without LPV2050 prediction NOTAM	ENROUTE ~ LPV200	

- ➤ MSAS Ver3 is designed for LPV200.
- > At present, LPV250 is provided at 25 airports with 1 GEO.
- ➤ From October 1st, LPV250 will be provided with 2 GEOs (PRN137 service-in)
- > Data collections/evaluations continue for Certification taking Peak of Solar Cycle 25 into account.


Availavility [%] $00.000 \sim 50.000$ 50.000 ~ 60.000 60.000 ~ 70.000 $70.000 \sim 75.000$ $75.000 \sim 80.000$ 80.000 ~ 85.000 85.000 ~ 90.000 $90.000 \sim 92.000$ 92.000 ~ 94.000 $94.000 \sim 95.000$ 95.000 ~ 96.000 96.000 ~ 97.000 $97.000 \sim 98.000$ 98.000 ~ 99.000 $99.000 \sim 99.900$ 99.900 ~ 100.000

- Some of south-eastern regions of Japan are on the magnetic equation.
- Residual vertical position error would be marginal against LPV200 requirement Annex10 ATT-D 3.3.9.3. if strong regional Iono.event happened.

Measure is under consideration technically and/or operationally.


MSAS-based Approach Procedures for 25 Airports are officially published(RNP Approach LP/LPV minima). Expansion in progress in sequence.

- ➤ LPV250 operational evaluation by 5 airlines at 25 airports / 83airpots.
- JCAB analyze feedbacks from airlines using LPV minima from the perspectives as follows.
 - Usability of LPV vertical guidance
 - Signals In Space (performance and anomaly)
 - RFI event and loss of signal
 - On-board equipment failure

After official publication of AIP, airlines continue to collect data for operational evaluation for further feedback to JCAB.

(RJ 00)

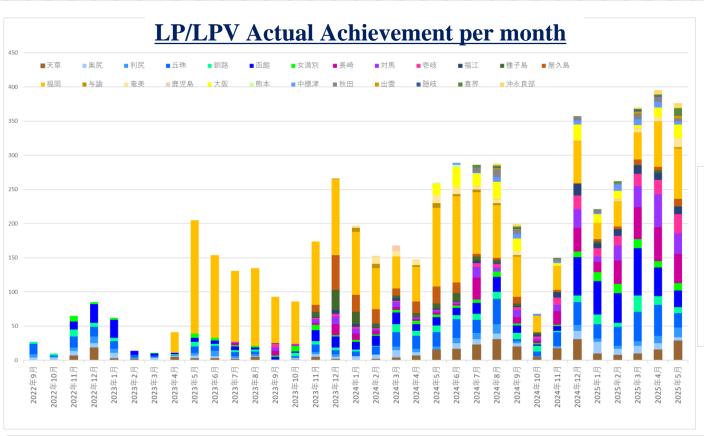
AHX (Regional) ATR42-600

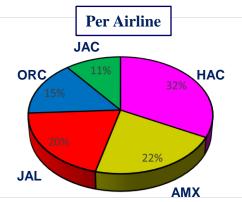
ATR42-600

ORC (Regional)

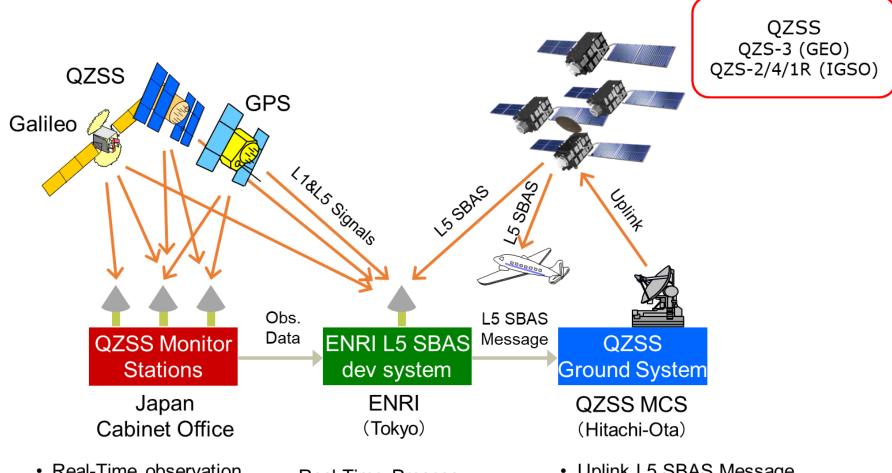
https://www.orc-air.co.jp/service/seat/

ATR42-600


NTH (Regional) JAL Group


https://www.info.hac-air.co.jp/wpcontent/uploads/2018/07/HAC_ATR_FNL_.pdf

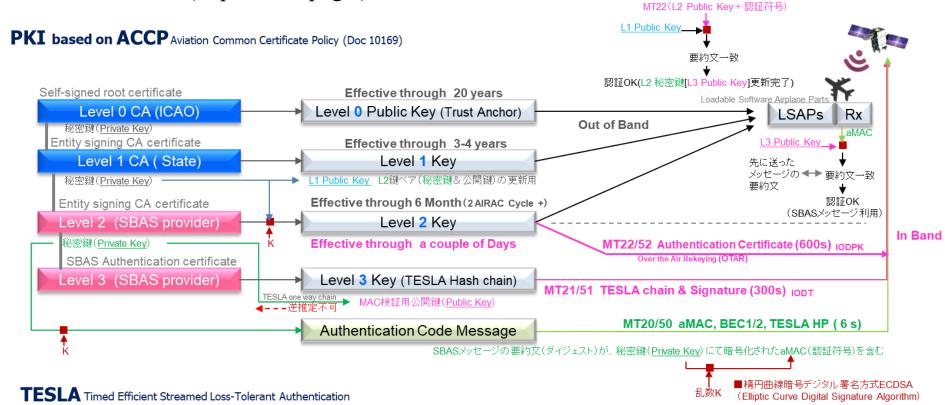
JAC (Regional) JAL Group ATR42-600


Status of SBAS equipage of national airlines

Airline	Model	SBAS	LPV
Hokkaido Air System, HAC	ATR-42-600	4	4
Amakusa Airlines , AHX	ATR-42-600	1	1
Oriental Air Bridge, ORC	ATR-42-600	2	2
Japan Airlines, JAL	A350-900/1000	24	24
	B777-300ER	12	
Japan Air Commuter, JAC	ATR-42/72-600	11	11
New Central Airservice ,CUK	DO-228	5	1
All Nippon Airways, ANA	DHC-8-Q400	24	
IBEX Airlines , IBX	CRJ-700	9	
Fuji Dream Airlines, FDA	ERJ-175L	8	
Ryukyu Air Commuter, RAC	DHC-8-Q400	5	
ANA	B777F/-300ER	15	
	Total	120	43

MSAS R&D activities

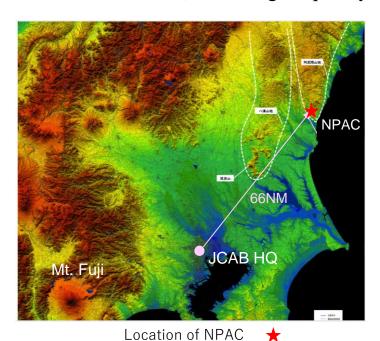
Validation Configuration: DFMC-MSAS proto-type(R&D 2017.8~)



- Real-Time observation
- Real-Time Process
- Augment GPS/Galileo/QZSS
- Generate L5 SBAS Message
- Uplink L5 SBAS Message to QZSS satellites
- Broadcast on L5S signal

MSAS R&D activities

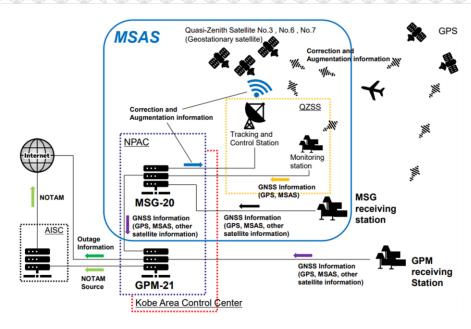
- Authentication is one of the most important subjects in SBAS and Core Constellations.
- ► JCAB is investigating SBAS Authentication for future MSAS evolution and contributing ICAO standardization activity in this area.
- ENRI's test bed (in previous page) will contribute to validation of ICAO standardization.

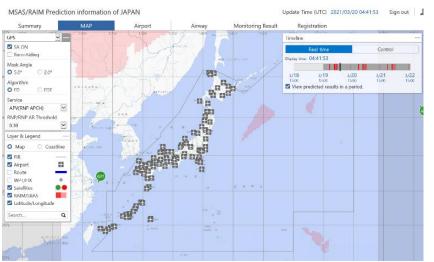


Public Key Infrastructure for the Authentication might share with PKI for FF-ICE.

MSAS Performance Assessment

- Network Performance Assessment Center (NPAC) was established in 2020 in response to the fostering "a globally consistent performance-based approach"
- Primary objective is assessing the continued operational safety of advanced CNS services (Datalink, PBN, ATC Surveillance) including frequency spectrum issues in Fukuoka FIR.





MSAS Performance Assessment

What NPAC is responsible for:

- ➤ To conduct continuous MSAS performance monitoring (using GPM: GNSS Performance Monitoring Equipment)
- To detect functional discrepancy against designated RNP (LP/LPV) performance
- To issue NOTAM source data if it is necessary.
- To continue evaluation and to collect data for future evolution of MSAS and Performance Monitoring (DFMC SBAS, Authentication etc.)

Conclusion

- ➤ MSAS has been step-by-step phased evolution since 2007.
- ➤ MSAS entered into a new phase (Version 3) in April 2025 to pursue full operation of LPV in Japan.
- > JCAB is continuing evaluation of MSAS for LPV operation as well as future evolution of MSAS.

Any Questions? Further information available from JCAB